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Abstract: Stereocontrolled syntheses of D(+)-erythro and L(-l-threo 
sphingosines are described starting from D-xylose and D-arabinose 
respectively through acetylenic intermediates 3 and 4, obtained by base 
induced double elimination of the g-alkoxy chlorides 5 & 13. 

Glycosphingolipids belong to a broad class of biologically active compounds, a 

sub-class of which consists of the cerebrosides. 
2 Cerebrosides, known to play an 

important role in the brain, have been shown to possess the structure I which has a 

long chain fatty acid attached to a sphingosine [(Dlerythro in most cases] through 

an amide linkage which in turn is coupled to a hexose sugar, predominantly 

galactose3. Apart from being the backbone component of these cerebrosides, reports 

have also established4 sphingosines to be the potent inhibitors of. protein kinase C 

(MC) & vitro and & a. Keeping in view the biological importance of 

sphingosines, it was envisaged to plan a stereoselective synthesis’ for each of these 

diastereomers from the easily available carbohydrate precursors. Ze describe herein 

the stereo-selective synthesis of 1 and 2 from D-xylose and D-arabinose respectively 

using our recently developed acetylenic technology. ’ 
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A retrosynthetic analysis (scheme I) indicated that the formation of 1 and 2 

could be visualised from 3 and 4 respectively by means of an acetylenic alkylation 

with the alkyl bromide as well as converting the hydroxyl to the amine function. 3 

and 4 could be realized’ using base induced double elimination of the g-alkoxy 

chlorides (5 and 13) as a key reaction, which in turn are easily accessible from the 

respective sugars. 
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The C-2 and the C-3 centres of the sphingosines I and 2 can be correlated with 

the C-4 and C-3 centres of the respective sugars where the introduction of the amino 

group at C-4 of sugar in SN2 fashion through tosylate incorporates the correct 

stereochemistry. 
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As per our synthetic plan (scheme 21, the chloro compound 56 was subjected to 

the key base induced double elimination reaction to give the acetylenic alcohol 37 

(98%) which in turn was alkylated with I-bromotridecane to obtain 6 (80%) [a$, 

+ll.O (C 1.75, CHC13). Reduction of 6 with LiAlH4 in THF gave the trans allylic 

alcohol 74Y 8 

0 -xylose 

11 LAH 

2) H+ 

1” 3, +i.2 (C 1.25, CHC13) in high purity, which on treatment with 
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catalytic amount of p-TsA afforded the trio1 8. The benzylidene protection of 8 was 

effected in CH2Cl2 with benzaldehyde dimethyl acetal using catalytic amount of p- 

TsA to afford a mixture of I ,38- and I ,2-benzylidene in 9:l ratio. The desired 

major 1,3-benzylidene 9 was separated by silica gel column chromatography. 

Tosylation of 9 using p-TsCl in CH2C12 gave IO which on treatment with NaN3 in DMF 

gave the azide 11’ (80%) [ 41, -33.4 (C 0.7, CHC13). Removal of the benzylidene 

group in 11 with 3N HCl in THF afforded the azido diol 12, which in turn was 

reduced with LiAlH4 to realize D(+)-erythro sphingosine (m.p. 78.4”-80.8”C; [a], - 

2.72 (C 1.1, CHC13); litSh m.p. 81-82”C, La], -2.8 (C 1.0, CHC~~). 
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Similarly, L(-)-threo sphingosine 2 was prepared starting from D-arabinose using 

the same synthetic sequence in comparable yields. 2 was characterised as its 

triacetate derivative 21 (Ac20 in pyridine), whose data was comparable with known 

compound (m.p. 41°C; litSh m.p. 41-42X; L aJ, +8.25 (C 0.8, CHC13), lit5h[ “1, 

+8.5 (C I .O, CHC13). 

In conclusion, here we have demonstrated a highly stereocontrolled synthesis of 

the D(+)-erythro and L(-)-threo sphingosines from the sugar precursors by a simple 

and operationally feasible acetylenic technology developed by us’ which could be 

extended to the synthesis of other naturally occuring biologically active compounds. 
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